Climate Data Assimilation on a Massively Parallel Supercomputer

ong Q. Ding and Robert D. Ferraro
Jet Propulsion 1 .aboratory

Califormia Institute 01 Technology
Pasa(kw,CA91109

ABSTRACT. We have designed and implemented a set of highly efficient and highly scalable algorithms for
an unstructured computational package, the PSAS data assimilation package, as demonstrated by detailed
performance analysis of systematic runs on up to51 |-nodes of an Intel Paragon. The preconditioned Conju-
gate Gradient solver achieves a sustained 18 Gflops performance. Consequently, we achieve an unprece-
dented 100 -fold reduction in time to solution on the Intel Paragon over asingle head of a Cray C90. This not
only exceeds the daily performance requirement of the I>ata Assimilation Office at NASA’s Goddard Space
Flight Center, but also makes it possible to explore much larger and challenging data assimilation problems
which ate unthinkable on a traditional computer platform such as the Cray C90.

1. introduction

Data assimilation extracts maximum amount of information from available observations using climate mod-
els of Earth system. The assimilation transforms observations from diverse sources at arbitrary space. and
time locations into a regularly gridded, time-continuous data set. It propagates information into unobserved
regions thereby complement ing the observat ions.

The physically-consistent, time-continuous data set defined on regularly spaced grid points produced by the
data assimilation has inherent usefulnessin abroad range of applications. One of its primary use isto provide
adirect confrontation between numerical model predictions with actual observations, i.e., incorporating the
actual observations into numerical weather prediction and/or climate modeling. Since observational data
come with errors due to various uncertainties, the data are incorporated in a statistical process much like a
Kalmanfilter[1]. Because the observations are irregularly distributed on the surface of the earth (both lati-
tude, longitude and elevation), and their positions change from time to time, the filtered observations must be
interpolated to aregular grid on which model systems are based.

‘I"he Physical-space Statistical Analysis System (PSAS) developed at the Data Assimilation Office (IDAO) at
NASA’s Goddard Space Flight Center[2,3] is an advanced system which provides a general framework to
perform the. above data assimilation tasks. This software system will play a centra role in NASA’s Mission to
Planet Earth enterprise and is designated to replace the existing operational system at the DAO by 1998.

Currently, a brute-force application of PSAS for acomplete analysis requires about 4-7 hrs on a single head
of aCray C90. Thisfalls far short of the IDAO real-time computationa requirements in a production environ-
ment (see Sec. ?.). Recently, we have implemented all mgjor parts of the. PSAS package on the Intel Paragon.
Wc designed and incorporated several new algorithms which a1 ¢ high] y efficient and scale well to very large
numbers (thousand) of processors. For example, atime-critical part of the package is the sparse linear equa-
tion solver, which achieves a sustained speed of 1 8.3 GF1.OPS on a 51 ?-node Paragon (see Sec.9). “I’his rep-
resents 36% of the theoretical total peak speed of the 512-node Paragon.

As aresult, the parallel PSAS package solves an 80,000 obser vation problem in just 158 seconds (wall clock
time, including about 18 seconds spent on reading/writing data from/to disk) on the 512-node Paragon. In
contrast, the same problem takes an estimated 5 hrs of CPU time on the Cray C90 (see Sec. 9). 'This repre-

sents an unprecedented 100+ -fold reduction in solution time. This parallel PSAS not only meets and sub-
stantially exceeds the real-time production requirements, it will in fact change the DAO operations
significantly. Many problems previously unexplored due. to their huge computational requirements now can
be solved in a reasonable amount of time.

2. The Data Assimilation Problem

1.et usfirst discuss the operational environment in which the data assimilation is carried out. Observations of
the weather system come from ground stations, satellites, flying balloons, and many other sources. The col-
lection of all these data within a given short time period indicate the state of the weather:ystem, w,,.in anor-
mal operat ional environment, successive observat ion data Sets come in every 6 hours: wy, , wo, w(,%
giving us arecord of what actually happened in the Earth surface system. Note that these observation data
setsare not defined at exactly the same space locations from one set to the next (due to the movement of sat-
ellites, the rotation of the earth, and the irreproducibility of balloon tracks), and the number of observations

differ from set to set. Furthermore, observations come with errors due to various uncertainties.

Meanwhile, successive forecasts of the state of the weather system, w¢!, wi, w,..., are computed using fore-

cast models, from a given initial condition. Note that in most forecast models, the weather System on the sur-
face. of the Farth is represented by variables defined on aregular 2°x2.5° grid, with 14-22 elevation levels.

These two streams of events are connected or fused together by the data assimilation process. Given afore-

cast w,which describes what the weather should be, and given the actual observations w,, which comes with
uncertainties as reflected in the error covariance matrix R, the data assimilation process is to obtain an opti-

mal estimate wf ®P! of the state of the weather system through a statistical process similar to a Kalman

filter [2,3],

w =w + K (WeHw)) (1)

where H is an interpolation operator interpolating forecast variables from grid locations to observation loca-
tions, and

K =P (1pfh? 4 RY!)

isthe gain matrix. The matrix P contains complex physical correlations between same type and different type
variables[2.], calculated using alarge number of existing routines.

“I" his data assimilation accomplishes several important things. It produces the optimal data set combining
observations with the numerical forecast. 1t transforms the observations from diverse sources at arbitiary
space locations to the regular grid. This alleviates the difficulties associated with observations that change
from time to time, both in number and in location, and propagates information from observed regions to
unobserved regions.

‘I'he optimal physically-consistent, time-continuous data set defined on regularly spaced grid points produced
by the data assimilation has inherent usefulness in a broad range of applications. In particular, it can be used
to produce more accurate forecasts by using the assimilated data set a§the initial condition in computing the
next forecast, leading to an better forecast sequence, w1 w2, wi 7 ', Furthermore, by examining the
differences between the model forecast and the assimilated data (not the observations data), one may get
hints and improve the forecast model itself to get a better forecast. (We emphasize that athough the data
assimilation relies on amodel forecast as a correct criteria to assimilate to, forecast models are independent
of the data assimilation,)

in operational environments, the data assimilation process is a computationally intensive task: it isrepeated
every Az -6 hours continuously on an aimost dedicated computer, consistent with the periodicity of the

incoming observation data. This leads to the real-time requirement: a single assimilation cannot take longer
than the time period Az . in fact, for areal-time forecast, everything add together including data assimilation,
forecast simulation, other data gathering and manipulations/analy sis, €tc., must be done within At. Further-
more, a complete, research/study often requires consistently assimilated data going back perhaps to the 80’s.
In fact, the ambitious re-analysis (assimilation) of the past 5 years of data relating to the Mission to Planet
Farth Project would require arate. of 120 assimilations per day in real time. The parallel PSAS package we
have implemented, which reduces solution time from 5 hrs on C90 to 3 min on 5 12-node Paragon, now ade-
quately meets this challenge.

3.The PSAS Algorithm

The PSAS problem is a challenging computational problem because the sizes involved are large. The number
of observations No is around 10° or more for operational systems. T'his is represented as a single vector W..

Note that all observation variables are treated equally, even though some of them, such as an east-west wind
velocity data and a north-south wind velocity data, are actually taken at the same space locations.

The final assimilated data are defined on the regular grid points. At 2° x 2.5° horizontal resolution, there are
13104 grid points at each elevation level. The smallest forecast model system contains14 elevation levels for
four upper-air components and 3 sea-level components; they add uptoNf=(3+4x14)x13104 = 773,136
model variables. | he operational system will have 18-22 elevation levels, which brings N, to 10° or more, All
of t hese variables are represented as a single vector w,, similar to W,

It is now clear that to calculate the gain matrix K requiresinverting aNo x No matrix M= HP'H7 4R, This
would require a computation of ordcrN03 =105 operations, a computation outside of today’s capabilities.
Fortunately, calculating K is only necessary if we want to compute the error covariance matrix for the assim-
ilated data (in Kalman filter theory, K determines how error covariances pt opagate in time), and they are
ignored at present. instead, the PSAS algorithm solves the following equation for the vector x defined at the
observation locations:

(HPTHY4R) x = wg - Hwg 3)

The symmetric No x No matrix M = HP!HT 4R is called the innovation matrix. Using a Conjugate Gradient
method, this innovation equation can be solved with a computation of order N . Afterwards, the solution x is
folded back from observation locations to the regular grid locations to obtain the final optimal state through
the increment

AW = wort - W, = PiHtx (4)

which represents the net effect to the forecast w,due to incorporating the observation data through the assim-
ilation process. Note P11V is a 10°x 100 sparse mati iX.

4.The Need for a Distributed-M emory Parallel Computer

The critical part of PSASisthe solution of alarge linear system of equations, the innovation equation ¥q. (3),
with 10° unknowns. The challenge of the problem lies in the size of the matrix involved. The matrix has a
size of 105X 105 with 74% of the matrix entries being zero, due to the approximation of a cutoff in correlation
of observations that are 6000km apart on the earth’s surface. To store the entire matrix would require 10 GB
(insingle precision, or 20 GB in double precision) of memory, exceeding the, capacities of any existing
sequential computer. This difficulty isresolved in the Cray C90 codes by re-computing the matrix on the fly,
at considerable expense of CPU time.

The memory-bound problem fits well into distributed -memory parallel architectures, which can have very

. large total memory. For example, the 5] 2-node Intel Paragon parallel computer at Caltech has atots] 512 x
3 2MB:=16GB. Furthermore, the huge amount of floating point computations required for the problem can be
distributed to individual processors, reducing the problem solution time dramatically. In fact, our implemen-

tation of the PSAS problem reduced the solution time from 5 hr on a Cray C90 to about 3 min on 512-node .
Intel Paragon.

5. Reformulating Matrix Sparsity Patterns

Correlation functions between two varibles generally have ashape like. a damped cosine. For computational
convenience, they are cutoff at 6000km where they reach zero arid the small oscillating tails are simply
ignored. ‘I’ his makes the matrix Hef H a sparse matrix with about 26% of the matrix entries nonzero. The
innovation matrix M has the same sparsity pattern. This sparsity level makes conventional sparse matrix tech-
niques inefficient, since they are typically used for matrices with nonzeros around 2% or less. In addition,
conventional sparse matrix technigues achieve only the memory bandwidth limited processor speed due to
the indirect indexing used there.

~ prd

Fig. 1 Regionsof observations, Fig.2 Block structure of the correlation
matrix. Only nonzero blocks are shown.

These problems are resolved by imposing a structural pattern to the sparse, matrix M: observations are
divided into regions with nearly equal numbers using a concurrent partitioned, and the correlation cutoff is
enforced at the region level (see Figure 1). That is, all observations in one region are either correlated to all
observations in another region or not at all, depending on whether the centers of the two regions are within
6000km. This slight modification on the physical correlations cutoffs leads to a correct and consistent solu-
tion, which differs from the original solution by 1-2% in an rms sense in our rigorous comparisons. However,
this modification increases the calculation speed dramatically. The imposed stiucture is ablock structure
where 74% of the. matrix blocks are identically zero (sec Figure 2). Now the matrix-vector multiplication can
be carried out using a level 2 BLLAS routine, which is typically an order of magnitude faster than the memory
bandwidth limited speed achieved by conventional sparse matrix techniques. For example, our solver runs at

77MELOPS on 1 node of the Paragon, in contrast to about 10MELOPS for conventional sparse matrix tech-
niques.

6. Modular Programming Approach

Since observations are taken at irregularly spaced locations and they change from time to time, the PSAS
problem is an unstructured problem whose parallel implementation is generally more complicated than regu-
lar problems. Yor this reason, we have developed a number of tools for unstructured problems, including an
observations partitioned, a matrix-block distributor and a p1 econditioned Conjugate Gradient (PCG) solver.

We take a modular approach in programming structures. We carefull y grouped high level data organizations,
paralel irnplementation related parts, such as partitioner, solvers, etc., into individual modules, using struc-
turesin the C programming language. They arc clearly separated from the lower level underlying physics
details: the large number of correlations between different components, such as winds or water vapor mixing
ratios, are rather complex (about 7500 lines of Fortran code spread over 40 subroutines). Interfaces to low
level routines are written to restrict accesses through only the matrix block assembly and one or two C struc-
tures. The parallel codes contains 15,000 lines C codes and the 7500 lines existing Fortran codes; the. original
C90 Fortran codes has about 22,000 lines.

This approach has a number of benefits. It facilitates application development by restricting the physics part
to asmall section (albeit alot of code for the complex corielations) so that the application scientists can eas-
ily modify it for various experiments. These routines use familiar Fortran and are free from considerations on
how parallelism is achieved. It also maintains efficiency by using Fortran for numerical computations, and by
using the highly efficient BLLAS routines. For example, the PCG solver is essentially a skeleton code calling
underlying Fort: an routines and BI1.AS routines for numerical calculations. More importantly, this approach
makes the high level data organization easier to develop and maintain. In fact, while we at e devel oping the
parallel implementation, the scientists at the DAOQ are developing new physical correlations/m echanisms,
which will be easily incorporated into the parallel package later on.

7. Solving the Innovation Equation

Observation Partitioner. After observations are read in from disk and arbitrarily distributed among proces-
sors, they are first grouped into regions of nearly same number, using a concurrent partitioner we have previ-
ous] y developed| 2]. The partitioner uses an recursive inertial bisection algorithm, therefore leading to good
aspect ratios for the resulting partitions which is best for this p1 oblem. Correlations among these regions
results in the sparse block structureinthe innovation matrix. Improvements have been made to the partitioner
so that it now runs on an arbitrary number of processors, instead of power-s of 2 number of processors only.
Turther more, the peculiar feature that many observation data (up to 42. in a case) are actually located on the
same horizontal point (varies in elevation and in data type) cause redundancies and ambiguity in the bisection
algorithm. We modified the partitioned to always put these. data into or-m group, resulting in dight variations
in number of datain each final partition.

Matrix Distributor. Distribution of the huge innovation matrix proceeds first by calculating sparsity pattern,
which is represented by correlation lists identifying which observation regions are correlated to which other
regions. Then alist of nonzero matrix blocks of this irregularly structured problem is generated. The large
number of matrix blocks (e.g., there are 34907 matrix blocks in the 512-node case) must be distributed
among the processors in a load-balanced way. This optimization problem on 34907 variables with vai ious
constraints is solved using a heuristic algorithm. After an initial trial distribution and several iterative
improvements, much like a simulated-annealing, the algorithm finds a near-optimal distribution in just a few
seconds .

"The observation 1 egions are then replicated among processors according to the matrix-block distribution list
and the matrix blocks are calculated using the large number of Fortran routines describing the exact physical
correl a ions. ‘I'he calculation of matrix entries is quite expensive because the physics correlat ions requiire

many complex operations and involves man y branching, and therefore, runs at typical scalar processor speed.

The paralel package now spends a significant amount of time. (about 10-20%) on this part, in the light that
the other critical parts, especially the previous dominant solver part, are speeded up much more dramatically
inthe parallel implementation (see Section 9).

PCG Solver. The innovation equation is solved by a preconditioned conjugate-gradient iterative solver, of
which the key part is the multiplication between the global matrix and the global vector{3]. Given the
imposed matrix block structure, the multiplication proceeds similar to what one might called a parallel block
approach for dense matrix-vector multiplication. in this parallel block approach, a dense matrix is divided
into blocks which are then distributed; and a global vector is divided into sub-vectors which are then distrib-
uted/replicated. Added to this basic algorithm is aflexible structure to handle a block sparse. matrix (in fact,
74% of matrix blocks are identically zero for this problem), The size of the matrix blocks varies from one to
another, and the number of matrix blocks generally cannot be evenly divided by the number of processors.
Hurthermore, we only store the upper-right triangle matrix blocks due to symmetry; this allows each non-
diagonal matrix block to be used twice in each matrix-vector multiplication, and therefore increases the com-
putation/communication ratio. Communication here is irregular for the sparse matrix; and storing only upper-
right triangular half of the matrix adds more irregularity to the communication pattern. When everything is
properly implemented, this new algorithm for the “not-so-sparse” sparse matrix-vector multiplication is
highly efficient and scales well to large number of processors, as indicated by the performance numbers
shown here. We use adiagonal block precondit ioner, which reduces the requi red number of CG iterations for
agiven accuracy by afactor of 2-3. The solution of the preconditioned equation is well-balanced and is car-
ried out independently on each processor by solving one diagona block at a time. using a standard CG solver.

8. Folding back to Regular Grid

Folding back the solution to aregular grid at all elevation levels, i.e., calculating Aw = 'y , represents
a very significant computational task, mainly due to assembling the N,x No matrix P'HY The matrix PIHY
has similar sparsity pattern as the innovation equation matrix M, excptit is not symmetric any more. The
folding-back process is dominated by assembling the huge matrix PH!. Fortunately, the. matrix-vector mul-
tiplication is carried out only once, so that the entire matrix does not need to be stored at the same time; they
are computed as needed on the fly, one matrix block after another.

Matrix PfH1Y couples variables defined at observation locations to those defined on regular grid points. We
make use of the fact that the observation locations have been g ouped into regions and distributed among pro-
cessors in a balanced way during the partitioning process, To efficiently implement the correlation cutoff at
6000km, the regular grid points have to be grouped into grid regions similar to grouping of observations for
the innovation matrix, and then proper] y distributed among the processors at the beginning of the fold-back
process.

Grid Regions. The 13,104 grid points on the 2.0x2.50 mesh are grouped into 12S static rectangular regions
based on latitudes and longitudes, which are different from the observation regions in shape, size and loca-
tion. “I’he entire surface of the globeisfirst divided into 11zones, each of which isan 1 8° strip between two
latit udes specified in afile, except at north/south poles where a zone covers the entire circular area within 9°
latitude from the pole. The zone covering the equator is divided into 18 regions. Yor zones closer to the north/
south poles, they are divided into fewer and fewer regions in a manner which gives them roughly the same
area. The entire zones covering the north and south poles are single regions. Grid points on higher elevation
levelsare grouped similarly, such that a single giid region looks like a column sticking out from sea-level and
reaching up to the upper atmosphere.

Grid ' 1’binning, The number of grid pointsin each grid region varies substantially, even though all regions
have similar surface area. For this reason, in those zones above 45° latitude, grid points in the longitudinal
direction are thinned gradually, so that the number of grid points remaining in each region become roughly
same as the number of grid points in equatoria regions. The total number of gridpointsis reduced inthis way

6

to 8792. The matrix-vector multiplication will only use these remaining grid points, and values at the thinned
grid points are obtained by interpolated from neighboring unthinned points. “|” his reduces the total computa-
tional effort by 1- 8792/13104 =31%. The implementation keeps this thinning process as a run-time option
so that one can check the consistency of the final solution.

GridDistribution. Since observations are already distributed, we distribute grid regions according to the
sparsity pattern of the P'HT matrix. On each processor, we loop through al 128 grid regions; if agrid region
correlates to (is within 6000km of) at least one of the observation regions on the processor, this grid region is
retained on the processor, Since a given grid region may correlate to many observation regions on many dif-
ferent processors, grid regions may be copied to different processors. In fact, on average, agrid region isrep-
licated on 1/3 of all processors,

Folding Back. “I”he matrix-vector multiplication proceeds on each processor by going through alt correlated
pairs between a grid-region and an observation-region. For each such pair, the matrix block is first calculated.
For upper-air components, the matrix blocks between the observation region and the grid region at all eleva-
tion levels are calculated at once. (In this way, we can make use of the specific form of the correlations to
reduce significant] y the amount of computation requited at a later stage.) Then the multiplication between the
matrix block and subvector is carried out and the result is accumulated using a single BI.AS routine. They
proceed independently and simultaneously on all processors.

Next wc sum together increment sub-vectors on different processors to form the final results. Since the grid
regions on each processor differ, the order of increment sub-vectors is different as well. So we reshuffle the
sub-vectors on each processor into an universal vector which has identical order on all processors. In the uni-
versal vector, the components not present on a processor are set to zero. Afterwards, a global sum over the
universal vector on all processors is performed. This final results iswritten to abinary file. in the case where
grid points have been thinned, the universal vector components are reshuffled and the length of the increment
vector for each component at each level isrestored to the original 13104, with values on thinned grid points
being sSimple interpolations between nearest unthinned grid points along, the longitudinal direction.

9. Performance

The parallel PSAS package is complete, and its accuracy has been verified on smaller problems where the
sequential results can be readil y obtained. We carried outrunson various real problems on the Intel Paragon
with increasing problem sizes on increasing number of processors. Table 1 summarizes the timings for a
79,938 observations problem with folding back to all 14 elevation levels on a 51 2-node Intel Paragon. The
time on Paragon is wall-clock time.

TABLE 1. Timings for an 79,938 observation problem on S12-node Paragon

time (see) | tasks

14.6 read input drrt a

3.1 partitioning observations

3.8 calcul ate nonzero blocks and their distribution lists
33 replicate observation regions

238 calculate matrix entries

36.4 solve innovation equation using 'CG solver

17 other miscellancous parts

sub total for innovation equation: 72
67.6 assemble PH matrix and multiply P11x
0.4 create grid regions, correlation lists

~J

TABLF 1, Timings for an 79,938 observation problem on 512-node Paragon

time (see) | tasks

15 re.-ordcr and interpolate increment veclor
sub total for folding back: 69.5

2. | write increment vector into ¢l isk

158 total time

From the table, one can see that solving the innovation equation costs 72 seconds, which includes 36 seconds
spent on the PCG solver itself, 2.4 seconds on matrix entries assembly, and about 12 sec on the. parallel over-
head such as partitioning observations into512 regions and generating load-balanced distribution lists for the
correlation matrix.

The fold back now costs 70 seconds, which includes 0.4 sec spent on generating grid regions and distributing/
replicating matrix block lists, 68 sec on assembling the matrix entries and carrying out the local matrix-vector
multiplication, and 1.5 sec on global summing of al increment vectors, restoring vector length/order and
interpolating to obtain values on thinned grid points.

The same identical tasks are also performed on the Cray C90 by J. Guo at the DAQO using the sequential Cray
codes, The CPU timings are listed in Table 2.., along with corresponding Paragon timings for comparison.
Overall, the solution timeis reduced by afactor of 115, from about 5 hours on the C90 to 3 minutes on a 512-
node Paragon, (Because of the expense of C90 time, the complete run for this large problem was not carried

TABLE 2. Timing Comparison with Cray C90, * indicates estimates. Timings on C90 are obtained by 3. Guo at DAO.

Tasks 1-headCray C90 | 512-node Intel Paragon
Read data and solve equation | 9120 87

Yold back and write data|“9120~ 71

Total 18240" 158

out. instead, estimates were made basedon runs on smaller problems.) This 100-t- -fold reduction in solution
timeis unprecedented in the area of high performance computing.

We analyzed the performance of the PCG solver in further detail, because our parallel algorithm designis pri-
maril y focused on it. “I"he solver achieves a sustained speed of 18.3GFI.01’Son a5 12-node Paragon for an
85000 observation problem (see Figure 3.). This represents 36% of the theoretical total peak speed of 51.2
GFHL.OPS. The solver achieves 77MF1.0PS (77% peak speed) on one node. The reduction of efficiency on
51 ? nodes is due to various factors, such as communication, load-imbalance, etc. These numbers indicate the
high efficiency the package has achieved. (The use o the level 2 BILAS routine for matrix-vector operationsis
crucial to achieve the high efficiency. On one Paragon node, the BI.AS matrix-vector multiplication SGEMV
gets 83MELOPS for matrix size of 10007 and 67MF1.OPS for matrix size of 2002.)

The PCG solver spends 27.5% of the time on communications for this problem on 5 12-nodes. During each
iteration, most of the communication time is spent on sending or receiving (on average) 536 messages per
processor with (on average,) 166 floating point numbers in a message. These percentage numbers on peak
total speed and on communication indicate the highly scalable nature of the underlying algorithms.

It should be noted this performance is achieved under standard operating environment supported by ven-
dor and involving no special optimization targeted for the specific computer --- the performance IS
achieved main] y due to proper algorithm design/implement ations, and therefore more representative of what
could be achieved by average users. [The codes run under NX, not the much faster SUNMOS, and with no
specia assembly programming, except the standard vendor-supported B1.AS package.]

Although Mflops rating is important for performance characterizations, problem solution time is the direct
target for application scientists. The parallel codes reduces the entire problem solution time by more than a
factor of 100 by going to 5 12-node Paragon from 1 -head C90. We note that this dramatic reduction comes
from two factors. One is the high Mflops achieved on the51 2-node Paragon (vs. about 130 Mfiops on C90).
The other is the fact that on C90 the innovation matrix blocks are re-computed on the fly as needed due to
memor Y shortage, therefore considerable y increases the total computation unnecessarily y. Note also, the corn-
putation on Paragon isin single precision (limited by 32. MB/node memory on Paragon; with accumulation
variables in double precision, it appears to be adequate), while its double precision on C90. They both con-
verge to same residual.

we note that our problem solution time includes 10 and mesh partition/matrix distribution times, unlike many
other applications where the problem mesh partitioned and matrix distribution are done in a separate prepro-
cessing and not included in their solution time. This is because our codes includes partitioner, distributor,
etc., in the same run-time executable.

25600.0

12800.0 3 /
6400.0 | — |— /

& 3200.0| -~ | - — , -
0 /

iL 1600.0 |
= /
800.0|- - |-— |- /

400.0 — |- - /
200.0| |

100.0 | <~

50.0' - - | —

1 2 4 8 1 6 32 64 128 256 512
Number of Processors

Figure 3. Performance of the PCG solver.

The two dominant parts remaining in the assimilation problem are the assembly of the matrix entries of the
innovation and the fold-back matrix, as clearly indicated by their timings shown in ‘I’able 1. They are almost
perfectly parallelized in our implementation, though a 10% level of load-imbalance still exists. This could be
improved by using a more sophisticated distribution algorithm, thereby reducing the CPU time by about
10%. Because matrix entries are physical correlations which have many complex formulations, involving
transcendental functions and many branching, they are carried out at typicalscalar processor speed (about

S5GFL.OPS in this case). Significant improvements in this part requires improving the sequential codes them-
selves. One direction is careful programming of the physical correlations to take full advantage of the RISC
pipelined processor architecture. Another direction is to reformulate the basic computational stages such that
some entities/combinations can be re-used many times, i e., reduce the amount of computation itself, For
example, calculation of the relatively expensive horizontal correlations should be structured in such a way
that it is done once for all elevation levels. In fact, the programming structures in the fold back part have been
designed with such an optimization in mind.

9.1 Conclusions

We have designed and implemented a set of highly efficient and highly scalable algorithms for the PSAS data
assimilation package, and achieved a 100-fold solution time, reduction on a 512 node Intel Paragon parallel
platform over a single head Of a Cray C90.This clearly demonstrates that data assimilation problems are well

suited for distributed-memory massively parallel computer architectures. In particular, this work demon-
strates that irregular and unstructured problems such as the data assimilation problem can be efficiently
implemented on this type of architecture, with good underst andi ng of the problem, careful (re) design of al 1
necessary algorithms involved and effective usc of explicit message passing. By focusing on the algorithms,
the application achieves a high sustained performance. Since no speciality.d optimizations targeted for the
particular computer is done, these performance numbers are more representative of what could be achieved
by average user s..

The parallel PSAS package now meets and exceeds the DAO real-time production computing requirements.
It will also improve the DAO operations significantly: many problems previously unexplored due to their
huge computational requirements now can be solved in atimely manner.

Acknowledgment. ClaraChan and Donald Gennery at JP1. contributed to this work by writing portions of
the code. We thank Peter Lyster, Arlindo Da Silva, and Jing Guo at the DAO for making the Cray C90 code
available to us and helping us in understanding the problem. Access to the 5 12-node Paragon at Caltech is
provided by the NASA HPCC Program. ‘I’his work is part of a NSAS HPCC ESS Grand -Challenge Applica-
tion project.

“I"he research described here was carried out by the Jet Propulsion 1.aboratory, California 1 nstitute of Technol-
ogy. under a contract with the National Aeronautics and Space A.dministration.

References
[1] R. Daley, “Atmosphere Data Analysis’, Cambridge University Press, New York, 1991

[2] . Pfaendtner, S. Bloom, D. Lamich, M. Seablom. M. Sienkiewicz, J. Stobie, A. daSilva, |.documentation
of the Goddard Earth Observing System Data Assimilation System - Version 1, NASA Tech Memo,1995

3] A. da Silva, J. Pfaendtner, J. Guo, M. Sienkiewicz, and S.E. Cohn, Assessing the Effects of DData Selec-
tion with DAQO’s Physical-space Statistical Analysis System, Proceedings Of International Symposium on
Assimilation of Observations, Tokyo, Japan, March, 1995.

[4] H.Q.Ding and R.ID. Ferraro, “Slices: A Scalable Concurrent Partitioned for Unstructured Finite Element
Meshes’, Proceedings of SIAM 7th Conference, for Parallel Processing, p.492, 1995.

[S] H.Q. Ding and R.D. Ferraro, “A Genera Purpose Parallel Sparse Matrix Solvers Package”, Proceedings
of 9th International Parallel Processing Symposium, p.70, April 1995.

10

